Decentralization of Federal Agencies

Two years ago, the author of this column modestly suggested to the Congress, to the Budget Bureau and to officials in the Executive branch of the government, the advisability of taking those agencies of the government whose principal work is away from Washington and removing those agencies to other cities. He cited as reasons for such a program that it would result in a saving on travel by government officials, that it would relieve congestion in the Capital, that it would promote efficiency, that it would take such agencies closer to their field of work, and that it would enable other cities to share in the benefits of Federal activity. At that time, the suggestion met with little response. Then came the initial defense effort followed by genuine war effort which brought thousands of persons to Washington to work for the Army, the Navy, for the Office of Production Management and other agencies directly concerned with defense and war. This influx of people required office space. It required housing where they might live. As the number increased, the need for space increased and today, the decentralization of non-defense agencies is one of the paramount problems of the Capital. The President has ordered that certain agencies be removed to Pittsburg, New York, Philadelphia, Chicago and elsewhere. The residents of Washington oppose the move on the ground that large numbers of people make good business. Other groups oppose the move and so the fight is on. Against this array however stands the testimony of the Public Buildings Administration which frankly states that removing some of these agencies is the only feasible solution for accommodating the additional defense workers who will be brought to the Capital.

The Shadow of Charles Goodyear

Today, rubber is required in many instruments of warfare. The rubber equivalent of 17,000 tires is required in a battleship; the equivalent of 124 tires is needed in a medium tank; 175 pounds of rubber are required in a gun carriage; 2 pounds of rubber go into each soldier's raincoat; and an airplane cannot leave the earth unless equipped with rubber tires. Thus does rubber become one of the critical items of warfare. Our annual needs are about 600,000 tons, ninety eight per cent of which comes from British Malaya and the Dutch East Indies. Since these spots lie in the active theatre of war, we must look elsewhere for a rubber supply. Three sources are available. The first is Brazil where rubber was once cultivated. This is not very promising from the standpoint of immediate needs. The second is the rubber-bearing guayule plant which grows in California. Rubber supplies from this source will prove rather meagre. The third source is synthetic rubber. Already, four plants, each having a capacity of 10,000 tons per year, have been authorized and are under construction. Synthetic rubber however is rather high in price. There appears on the horizon today another source and that is the prospect of rubber made from the by-products of corn. Chemists are bending over laboratory test tubes in the hope of making this a reality and already it gives great hope and promise. Who knows but what our rubber supply may yet be derived from the corn fields of the middle west. It's a long way from that date when Charles Goodyear accidentally dropped a bit of sulphur in a kettle of rubber which he was cooking and thus discovered the process of vulcanization.
About 1800 years ago, there lived a celebrated Egyptian astronomer named Claudius Ptolemy who divided the earth into slices by means of lines running from pole to pole as an aid in describing the location of countries and continents, to aid in telling time and to aid navigators. These lines are called meridians of longitude and there are 360 of them so that the earth is divided into 360 degrees of the circle. At the equator, these meridians are a little less than 60 miles apart. Mr. Ptolemy had to select one of these lines as a starting point to be marked zero, so he selected the line which cut through the Canary Islands and that line was the starting point for telling time until 1884 when the zero line was moved to Greenwich, England as the result of a scientific conference held in Washington, D.C. Greenwich is a suburb of London and is the location of a celebrated observatory which was founded in 1675. When the sun is directly above this zero meridian of longitude at Greenwich, it is exactly noon. Because of the earth's rotation and the movement of the sun, it gets earlier as you travel westward from Greenwich because 15 degrees of the earth surface pass under the sun in one hour. When you reach Utica, New York on the 75th meridian of west longitude, it is 5 hours earlier than Greenwich; when you reach Canton, Illinois on the 90th meridian, it is 6 hours earlier and so on west. But it would be most inconvenient for each city to have its own time so Congress divided the country into time zones corresponding to the 75th, 90th, 105th, 120th and 150th meridian of longitude and these zones have time which is one hour apart and are known as Eastern Standard, Central Standard, Mountain Standard, Pacific Standard and Alaska time. When the first World War came on, the time in each zone was set ahead one hour to conserve daylight and thus we were first introduced to Daylight Savings Time. Now comes the second World War and the need to save electric power for defense and war purposes and in pursuance of that need, Congress last week enacted another Daylight Savings Act whereby the time of each zone will be moved forward one hour, twenty days after the measure becomes law. From Claudius Ptolemy to the 77th Congress is a long time.